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Speech recognition problem

Automatic speech recognition (ASR)

→ “OK Google, directions home”

Text-to-speech synthesis (TTS)

“Take the first left” →
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Speech problems

• Automatic speech recognition

− Spontaneous vs read speech
− Large vocabulary
− In noise
− Low resource
− Far-field
− Accent-independent
− Speaker-adaptive

• Text to speech

− Low resource
− Realistic prosody

• Speaker identification

• Speech enhancement

• Speech separation
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What is speech — physical realisation

• Waves of changing air pressure.

• Realised through excitation from the vocal cords
• Modulated by the vocal tract.
• Modulated by the articulators (tongue, teeth, lips).
• Vowels produced with an open vocal tract (stationary)
− Can be parameterized by position of tongue.

• Consonants are constrictions of vocal tract.
• Converted to Voltage with a microphone.
• Sampled with an Analogue to Digital Converter

Time

Am
plitude

Sampling & Quantization
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Speech representation

• Human hearing is ~50Hz-20kHz

• Human speech is ~85Hz–8kHz

• Telephone speech has 8kHz sampling: 300Hz–4kHz bandwidth

• 1 bit per sample can be intelligible

• CD is 44.1kHz 16 bits per sample

• Contemporary speech processing mostly around 16kHz 16bits/sample
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Speech representation

We want a low-dimensionality representation, invariant to speaker,
background noise, rate of speaking etc.

• Fourier analysis shows energy in different frequency bands.

• windowed short-term fast Fourier transform

• e.g. FFT on overlapping 25ms windows (400 samples) taken every
10ms

− Energy vs frequency [discrete] vs time [discrete]
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Mel frequency representation

• FFT is still too high-dimensional.

• Downsample by local weighted averages on mel scale non-linear
spacing, and take a log. m = 1127 ln(1 + f

700)

• Result in log-mel features (default for neural network speech
modelling.)

• 40+ dimensional features per frame
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MFCCs

• Mel Frequency Cepstral Coefficients - MFCCs are the discrete cosine
transformation of the mel filterbank energies. Whitened and
low-dimensional.

• Similar to Principal Components of log spectra.

• GMM speech recognition systems may use 13 MFCCs

• Perceptual Linear Prediction – a common alternative representation.

• Frame stacking- it’s common to concatenate several consecutive
frames.

• e.g. 26 for fully-connected DNN. 8 for LSTM.

• GMMs used local differences (deltas) and second-order differences
(delta-deltas) to capture dynamics. (13 + 13 + 13 dimensional)

• Ultimately use ~39 dimensional linear discriminant analysis
(~class-aware PCA) projection of 9 stacked MFCC vectors.
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Speech as communication

• Speech evolved as communication to convey information.

• Consists of sentences (in ASR we usually talk about “utterances”)

• Sentences composed of words

• Minimal unit is a “phoneme”

− Minimal unit that distinguishes one word from another.
− Set of 40–60 distinct sounds.
− Vary per language,
− Universal representations.

◦ IPA: international phonetic alphabet,
◦ X-SAMPA (ASCII)

• Homophones

− distinct words with the same pronunciation: “there” vs “their”

• Prosody

− How something is said can convey meaning.
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Datasets

• TIMIT

− Hand-marked phone boundaries given
− 630 speakers × 10 utterances

• Wall Street Journal (WSJ) 1986 Read speech. WSJ0 1991, 30k vocab

• Broadcast News (BN) 1996 104 hours

• Switchboard (SWB) 1992. 2000 hours spontaneous telephone speech
500 speakers

• Google voice search

− anonymized live traffic 3M utterances 2000 hours
hand-transcribed 4M vocabulary. Constantly refreshed, synthetic
reverberation + additive noise

• DeepSpeech 5000h read (Lombard) speech + SWB with additive
noise.

• YouTube 125,000 hours aligned captions (Soltau et al., 2016)
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Rough History

• 1960s Dynamic Time Warping

• 1970s Hidden Markov Models

• Multi-layer perceptron 1986

• Speech recognition with neural networks 1987–1995

• Superseded by GMMs 1995–2009

• Neural network features 2002–

• Deep networks 2006– (Hinton, 2002)

• Deep networks for speech recognition

− Good results on TIMIT (Mohamed et al., 2009)
− Results on large vocabulary systems 2010 (Dahl et al., 2011)
− Google launches DNN ASR product 2011
− Dominant paradigm for ASR 2012 (Hinton et al., 2012)

• Recurrent networks for speech recognition 1990, 2012–

− New models (attention, LAS, neural transducer)
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Probabilistic speech recognition

• Speech signal represented as an observation sequence o = {ot}.
• We want to find the most likely word sequence ŵ

• We model this with a Hidden Markov Model.

− The system has a set of discrete states,
− transitions from state to state according to transition probabilities

(Markovian: memoryless)
− Acoustic observation when making a transition is conditioned on

state alone. P (ot|ct)
− We seek to recover the state sequence and consequently the word

sequence.

/K/ /AE/ /T//E//TH/<S>
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Fundamental equation of speech recognition

We choose the decoder output as the most likely sequence ŵ from all
possible sequences, Σ∗, for an observation sequence o:

ŵ = arg max
w∈Σ∗

P (w|o) (1)

= arg max
w∈Σ∗

P (o|w)P (w) (2)

A product of Acoustic model and Language model scores.

P (o|w) =
∑
d,c,p

P (o|c)P (c|p)P (p|w) (3)

Where p is the phone sequence and c is the state sequence.
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• We can model word sequences with a language model.

P (w1, w2, . . . , wN ) = P (w0)
∏

P (wi|w0, . . . , wi−1)
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Speech recognition as transduction
From signal to language.
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Speech recognition as transduction – lexicon

Construct graph using Weighted Finite State Transducers (WFST)
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Speech recognition as transduction

Compose Lexicon FST with Grammar FST L ◦G
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Phonetic units

• Phonemes: “cat” → /K/, /AE/, /T/

• Context independent HMM states k1, k2, ae1 . . .

− Model onset / middle / end separately.

• Context dependent states k1.17, . . .

• Context dependent phones

• Diphones (pairs of half-phones)

• Syllables

• Word-parts cf Machine translation (Wu et al., 2016)

• Characters (graphemes)

• Whole words Sak et al. (2014a, 2015); Soltau et al. (2016)

− Hard to generalize to rare words.

Choice depends on language, size of dataset, task, resources available.
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Context dependent phonetic clustering

• A phone’s realization depends on the preceding and following context

• Could improve discrimination if we model different contextual
realizations separately:
e.g AE preceded by K, followed by T: AE+T-K

• But, if we have 42 phones, and 3 states per phone, there are 3× 423

context-dependent phones.

• Most of these won’t be observed

• So cluster – group together similar distributions and train a joint
model.

• Have a “back-off” rule to determine which model to use for
unobserved contexts.

• Usually a decision tree.
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Gaussian Mixture Models

• Dominant paradigm for ASR from 1990 to 2010

• Model the probability distribution of the acoustic features for each
state.

P (ot|ci) =
∑

j wijN(ot;µij , σij)

• Often use diagonal covariance Gaussians to keep number of
parameters under control.

• Train by the E-M algorithm (Dempster et al., 1977) alternating:

− M: forced alignment computing the maximum-likelihood state
sequence for each utterance

− E: parameter (µ, σ) estimation

• Complex training procedures to incrementally fit increasing numbers
of components per mixture.

− More components, better fit. 79 parameters / component.

• Given an alignment mapping audio frames to states, this is
parallelizable by state.

• Hard to share parameters / data across states.

Andrew Senior Speech Recognition 23 of 63



Forced alignment

• Forced alignment uses a model to compute the maximum likelihood
alignment between speech features and phonetic states.

• For each training utterance, construct the set of phonetic states for
the ground truth transcription.

• Use Viterbi algorithm to find ML monotonic state sequence

• Under constraints such as at least one frame per state.

• Results in a phonetic label for each frame.

• Can give hard or soft segmentation.
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Forced alignment

With a transducer with states ci:

/K/ /AE/ /T//E//TH/<S>

Compute state likelihoods at time t

P (o1,...,t|ci) =
∑
j

P (ot|cj)P (o1,...,t|cj)P (ci|cj)

With transition probabilities: P (ci|cj)
To find best path;

P (o1,...,t|ci) = max
j
P (ot|cj)P (o1,...,t|cj)P (ci|cj)
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Forced alignment t = 0

/K/ /AE/ /T//E//TH/<S>
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Forced alignment t = 1

/K/ /AE/ /T//E//TH/<S>

Observation likelihoods P (ot|ci)
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Forced alignment t = 1

/K/ /AE/ /T//E//TH/<S>

Observation likelihoods P (ot|ci)
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Forced alignment t = T

/K/ /AE/ /T//E//TH/<S>

Observation likelihoods P (ot|ci)
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Decoding

Speech recognition unfolds in much the same way.
Now we have a graph instead of a
straight-through path.
Optional silences between words
Alternative pronunciation paths.
Typically use max probability, and work in the log
domain.
Hypothesis space is huge, so we only keep a
“beam” of the best paths, and can lose what
would end up being the true best path.

the

cat

a
once

hello

dog

cat
dog
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Two main paradigms for neural networks for speech

• Use neural networks to compute nonlinear feature representations.

− “Bottleneck” or “tandem” features (Hermansky et al., 2000)
− Low-dimensional representation is modelled conventionally with

GMMs.
− Allows all the GMM machinery and tricks to be exploited.

• Use neural networks to estimate phonetic unit probabilities.
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Neural network features

Train a neural network to discriminate classes.
Use output or a low-dimensional bottleneck layer representation as
features.

x1
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y1
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Hidden
layers

Input
layer

Bottleneck
layer

Output
layer
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Neural network features

• TRAP: Concatenate PLP-HLDA features and NN features.

• Bottleneck outperforms posterior features (Grezl et al., 2007)

• Generally DNN features + GMMs reach about the same performance
as hybrid DNN-HMM systems, but are much more complex.

Andrew Senior Speech Recognition 33 of 63



Outline

Speech recognition
Acoustic representation
Phonetic representation
History
Probabilistic speech recognition

Neural network speech recognition
Hybrid neural networks
Training losses
Sequence discriminative training
New architectures

Other topics



Hybrid networks

• Train the network as a classifier with a softmax across the phonetic
units.

• Train with cross-entropy.

• Softmax

y (i) =
exp (a (i, θ))∑N
j=1 exp (a (j, θ))

will converge to posterior across phonetic states:
P (ci|ot)
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Hybrid Neural network decoding

Now we model P (o|c) with a Neural network instead of a Gaussian
Mixture model. Everything else stays the same.

P (o|c) =
∏
t

P (ot|ct) (4)

P (ot|ct) =
P (ct|ot)P (ot)

P (ct)
(5)

∝ P (ct|ot)
P (ct)

(6)

For observations ot at time t and a CD state sequence ct.
We can ignore P (ot) since it is the same for all decoding paths.
The last term is called the “scaled posterior”:

logP (ot|ct) = logP (ct|ot)− α logP (ct) (7)

Empirically (by cross validation) we actually find better results with a
“prior smoothing” term α ≈ 0.8.
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Input features

Neural networks can handle high-dimensional features with correlated
features.
Use (26) stacked filterbank inputs. (40-dimensional mel-spaced
filterbanks)
Example filters learned in the first layer of a fully-connected network:

(33 x 8 filters. Each subimage 40 frequency vs 26 time.)
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Neural network architectures for speech recognition

• Fully connected

• Convolutional networks (CNNs)

• Recurrent neural networks (RNNs)

− LSTMs
− GRUs
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Convolutional neural networks

• Time delay neural networks

− Waibel et al. (1989)
− Dilated convolutions (Peddinti et al., 2015)

• CNNs in time or frequency domain. Abdel-Hamid et al. (2014);
Sainath et al. (2013)

• Wavenet (van den Oord et al., 2016)
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Recurrent neural networks

• RNNs

− RNN (Robinson and Fallside, 1991)
− LSTM Graves et al. (2013)
− Deep LSTM-P Sak et al. (2014b)
− CLDNN (right) (Sainath et al., 2015a)
− GRU. DeepSpeech 1/2 (Amodei et al., 2015)

• Bidirectional (Schuster and Paliwal, 1997)
helps, but introduces latency.

• Dependencies not long at speech frame rates
(100Hz).

• Frame stacking and down-sampling help.

Andrew Senior Speech Recognition 40 of 63



Human parity in speech recognition (Xiong et al.,
2016)

• Ensemble of BLSTMs

• i-vectors for speaker normalization

− i-vector is an embedding of audio trained to discriminate between
speakers. (Speaker ID)

• Interpolated n-gram + LSTM language model.

• 5.8% WER on SWB (vs 5.9% for human).
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Cross Entropy Training

• GMMs were trained with Maximum Likelihood

• Conventional training uses Cross-Entropy loss.

LXENT (ot, θ) =

N∑
i=1

yt (i) log
yt (i)

ŷt (i)

• With large data we can use Viterbi (binary) targets: yt ∈ {0, 1}
− i.e. a hard alignment.

• Can also use a soft (Baum-Welch) alignment (Senior and Robinson,
1994)
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Connectionist Temporal Classification (Graves et al.,
2006)

• CTC is a bundle of alternatives to conventional system:

− CTC introduces an optional blank symbol between the ”real”
labels.

− Simple to implement in the FST framework -an optional

/K/ /AE/ /T/- ---

− Continuous realignment — no need for a bootstrap model
− Always use soft targets.
− Don’t scale by posterior.

• Similar results to conventional training.
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CTC alignments
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Sequence discriminative training

• Conventional training uses Cross-Entropy loss
− Tries to maximize probability of the true state sequence given the

data.
• We care about Word Error Rate of the complete system.
• Design a loss that’s differentiable and closer to what we care about.
• Applied to neural networks (Kingsbury, 2009)
• Posterior scaling gets learnt by the network.
• Improves conventional training and CTC by ~15% relative.
• bMMI, sMBR(Povey et al., 2008)

P (Sr|Xr) =
p (Xr, Sr)∑
S p (Xr, S)

=
p (Xr|Sr)P (Sr)∑
S p (Xr|S)P (S)

Lmmi (θ) = −
R∑

r=1

logP (Sr|Xr)

LsMBR (θ) =

R∑
r=1

LsMBR (Xr, θ) =

R∑
r=1

∑
j=1

P (Sj |Xr) e (Sj , Sr)Andrew Senior Speech Recognition 47 of 63



Sequence discriminative training
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Sequence discriminative training
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Sequence2Sequence

• Basic sequence2sequence not that good for speech

− Utterances are too long to memorize
− Monotonicity of audio (vs Machine Translation)

• Attention + seq2seq for speech (Chorowski et al., 2015)

• Listen, Attend and Spell (Chan et al., 2015)

• Output characters until EOS

• Incorporates language model of training set.

• Harder to incorporate a separately-trained language model. (e.g.
trained on trillions of tokens)
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Watch Listen, Attend and Spell (Chung et al., 2016)

Apply LAS to audio and video streams simultaneously.

Train with scheduled sampling (Bengio et al., 2015)
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Watch Listen, Attend and Spell (Chung et al., 2016)

Andrew Senior Speech Recognition 53 of 63



Neural transducer (Jaitly et al., 2015)

• Seq2seq models require the whole sequence to be available.

• Introduce latency compared to unidirectional.

• Solution: Transcribe monotonic chunks at a time with attention.
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Neural transducer
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Raw waveform speech recognition

• We typically train on a much-reduced dimensional signal.

• Would like to train end-to-end.

• Learn filterbanks, instead of hand-crafting.

• A conventional RNN at audio sample rate can’t learn long-enough
dependencies.

− Add a convolutional filter to a conventional system e.g.
CLDNN (Sainath et al., 2015b)

− WaveNet-style architecture. [See TTS talk on Thursday]
− Clockwork RNN (Koutńık et al., 2014) Run a hierarchical RNN at

multiple rates.
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Raw waveform speech recognition

Frequency distribution of learned filters differs from hand-initialization:
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Speech recognition in noise

• Multi-style training (“MTS”)

− Collect noisy data.
− Or, add realistic but randomized noise to utterances during

training.
− e.g. Through a “room simulator” to add reverberation.
− Optionally add a clean-reconstruction loss in training.

• Train a denoiser.

• NB Lombard effect – voice changes in noise.
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Multi-microphone speech recognition

• Multiple microphones give a richer representation

• “Closest to the speaker” has better SNR

• Beamforming

− Given geometry of microphone array and speed of sound
− Compute Time Delay of Arrival at each microphone
− Delay-and-sum: Constructive interference of signal in chosen

direction.
− Destructive interference depends on direction / frequency of noise.

• More features for a neural network to exploit.

− Important to preserve phase information to enable beam-forming
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Factored multichannel raw waveform CLDNN (Sainath
et al., 2016)
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